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Abstract—A Fourier series approach is used to investigate a two-dimensional rectangular fin with arbitrary

variable heat transfer coefficient on the fin surface. The solutions for temperature distribution with three

different boundary conditions at the fin tip have been obtained. Based on the unigueness principle of

practica) problems, these solutions will lead to the familiar expressions when the heat transfer coefficient
is constant although they are different in form.

1. INTRODUCTION

MaNY FIN problems have been solved under the
assumption of constant heat transfer coefficient along
the entire length of the fin. A variety of results can be
found in ref. [1]. Unfortunately, in the design process
of the fin this assumption is not quite valid [2). For
example, with regard to the effect of variability of heat
transfer coefficient on the single material fin, finite
difference calculations with a linearly increasing value
of the coefficient showed a 39% reduction of heat
transfer in some cases [3]. Theoretically, it is shown
that for a flat fin the effects of the leading edge, the
boundary layer, and turbulence can lead to marked
variations in the heat transfer coefficient. Obviously,
an analysis of the combined conduction—convection
system with a variable heat transfer coefficient is
important from a practical viewpoint.

Historically, Han and Lefkowitz [4] studied a one-
dimensional longitudinal fin of rectangular profile
with arbitrary heat transfer coefficient, A(x), taken as
a power series of the distance x from the fin base.
Chen and Zyskowski [5] took the same problem with
an exponential variation of the heat transfer
coefficient, while Heggs ez al. [6] considered the tem-
perature distribution within an annular triangular fin
with heat transfer coefficients increased linearly from
the fin base to the fin tip. These investigations showed
that, in some cases, the assumed variations can give
results which are in excellent agreement with those
obtained experimentally. However, for any given
problem the appropriate variation cannot be pre-
scribed by these simple functions and consequently
uniform heat transfer coefficients are still used. More
recently, Snider and Kraus [7] developed an
expression for the average heat transfer coefficient
which can be determined by use of a lengthwise
weighting function w{x). Unal [8, 9] studied a one-
dimensional fin with heat generation and non-uniform
heat transfer coefficient which is a function of tem-
perature. Barrow [10] presented a series solution for
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the one-dimensional temperature distribution along
a rectangular fin with variable surface heat transfer
coefficient.

All of the previous studies are based on the one-
dimensional fin. Some researchers [11-13] reported
that the one-dimensional analysis can be used instead
of two-dimensional analysis only if the transverse Biot
number, Bi, is much less than unity. Suryanarayana
[12] has revealed that the fin heat fluxes can be lower
by 80% than those predicted by the one-dimensional
approach in some cases. Thus, the analysis for the
two-dimensional fin with variable heat transfer coeffi-
cients is important in theory and practice. Barrow
et al. [3] predicted the temperature and heat flow
in rectangular composite fins with a linearly increasing
distribution of heat transfer coefficients by finite
element and finite difference methods. However, the
analytical solution of this problem has not been
obtained because the boundary conditions become
complicated. Mathematically, difficulty arises for the
Sturm~Liouville problem with non-constant heat
transfer coefficient boundary condition according to
the traditional approach (separation of variables).
This paper develops a Fourier series approach to solve
the two-dimensional rectangular fin. The temperature
distribution in the rectangular fin with arbitrary vari-
able heat transfer coefficient has been written in terms
of a summation of series. The analytical solution has
been described for the basic governing equation with
heat dissipation by convection from the tip of the fin
to the surroundings at 7. In Section 3, solutions for
two other boundaries of the tip of a fin in which the
tip temperature is equal to that of the surroundings
and the tip is insulated are derived.

2. SOLUTION UNDER CONSTANT TIP
SURFACE CONVECTION COEFFICIENT

Consider a rectangular fin (28 x L) where both the
upper and the lower surfaces dissipate heat by con-
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NOMENCLATURE
a,. b, dimensionless unknown constants r temperature [K}
b, b, dimensionless elements in matrix T, temperature of surroundings [K]
B half thickness of fin [m] x,y Cartesian coordinates [m]
Bi transverse Biot number, AB/k w width of fin fm].
Cor dimensionless unknown constants
D dimensionless constant Greek symbols
h, h(x) heat transfer coefficient B roots of transcendental equations [m™ ']
[Wm K™ i thermal transmission ratio [W K]
H ratio of heat transfer coefficient and ¢, @ dimensionless temperature.
thermal conductivity [m™']
k thermal conductivity of fin material Subscripts
Wm~' K] b base of fin
L fin length [m] ¢ constant
P fin perimeter [m] Jj.m, n  indexes
Fo dimensionless elements in column matrix L tip of fin.
vection to a surrounding at temperature, 7, , with 0
variable heat transfer coefficient i(x) (Fig. 1). Fur- ay 0 r=0. 0<x<L; ()
thermore, the tip of the fin has a constant heat transfer
coefficient 4, and the temperature of the fin base is _do_ h(x) ¢ -B 0<x<lL 6)
T,. Under steady state condition and no heat gener- oy k

ation, the governing equation for the two-dimensional
fin of the homogeneous material is

Folxy) | Py _

- 1
ox’ & 0 0

where ¢(x, y) is a dimensionless temperature

-7,
(b(x: }’) =

ToT. @

with the following boundary conditions:

where & is the conductivity of the fin material. By use
of linear combination of the Fourier cosine series
about ¥ and the sine series about x [14], the solution
which satisfies the governing equation (1) can be
assumed as

z nnx . nnx nmy
o= 3 [a,, cosh ) +b, sinh -ﬂ;{l cos o

=13

+ Y ¢pcoshBpsinf.x (7

m=1

=1 x=0. 0 r<8B; 3 .
¢ * ’ ) where the four undetermined constants a,. b,, ¢, and
ap  hy B.. are not independent. Their relations can be found
- = =L 0<y<8B; 4 " o
ax  k * O<r<8 @ through the boundary conditions. However, the
y
Ty
h(x)
B kg
Tb X
B
h(x)
L

Fi6. 1. Geometry of a two-dimensional fin.
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above solution satisfies boundary (5) automatically.
It is obvious that boundary condition (4) must be split
into two parts so that two sets of constants can be
determined. The other boundary conditions (3) and
(6) can be used to determine the remainder of the
constants. First, introducing solution (7) into bound-
ary condition (3) the following expression is obtained :

x

-
Y a,cos 7; 1. (8)

n=1.273

By the inversion of the Fourier transform, the con-
stant a, can be found in terms of

_ (n—1)2
a, = u . (9)

nmw

After substituting equation (7) into boundary con-
dition (4) we have

ks

=, 2,28

n= 113

.,

m=1

hy - nL nmy
=2 {n 23[11 cosh +b 1nh§§} c0s 52

nmy

nnlL L
|:a smh +b cosh —wil co ZB

Cmb,. cosh B,y cos B,,L

+ i ¢, cosh B,y sin ﬂmL}. (10)

m=1

As mentioned above, expression (10) has to be divided
into two parts; i.e. from the second terms on both
sides, the eigenvalues f,, can be written as

h L
f.LcotB,.L=——.

X (1

From the first terms on both sides of expression (10)
b, can be expressed in terms of a,

b, = —a,D, (12)
where D, stands for
nnL anh nnL h, L
D ZB ZB Tk 13)
" rm:L+hLLt hth' (
2B " k ™28

Finally, ¢, can be found by considering boundary
condition (6). Introducing solution (7) into boundary
condition (6), we have

2

Y By sinh B, Bsin B,,x

m=1

h
(I:) Y ¢ncosh B, Bsin §,x
m=1
_ R 714 -2 nnx
wn;,ﬂB -1 |:a cosh2 +b th .

(14)

Utilizing the inversion formula of the Fourier trans-
form over the region (0, L), noting expressions (9) and
(12) and making suitable changes for some subscripts,
we find

b+ i by, =r, m=12..) (15
P
where
= 0.5 sinh B, B(8, L—sin B, L cos f,L)
bY; = cosh ﬁ,BLL h(]%) sin B,x sin f,,x dx
Vi =”§|‘3%J: [cosh%’%Y 19
— D, sinh %:l sin f,,x dx

J

where D, is expressed by equation (14). ¢,, in equation
(15) can be found by

by, by, - - blj : )y ry
by by - b:, : Ca r
=1 - an
bml bml bm/ Cn L™
where
b}, if j#m
bri = \bg+bh, i j=m 18)
Therefore, solution (7) can be expressed by
_ 0 (_l)m—l)/z
d)(x,))—":ZL3 -
4
nnl nt(L—x) h, L . nn(l—x)
28 osh = +2p sinh =35 nmy
nrL hmzL + hL . hmzL cos 2B
28 ¢ 2B ° 2B
+ Y ¢ncoshB,ysinB,x (19)

m=1

where f,, and ¢, are determined by equations (11)
and (17), respectively.

3. SOLUTIONS FOR THE TIP BOUNDARY
CONDITIONS OF THE FIRST AND SECOND
KINDS

The solutions in the two cases can be obtained
directly from that of Section 2 by approximation {1].
In the first case #, — o0, the temperature of the fin tip
is that of the surroundings, T, hence ¢(L, y) is
equal to zero. In the second case 4, — 0, the fin tip is
insulated. The analytical process can be, respectively,
shown as follows.
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Case 1
For h;, — oc, equation (11) can be simplified as
sin f3,,L = 0. (20)

Thus the roots of the transcendental equation are

="M m=1.2 21
ﬂm— L (’n— . ..) ( )
and equation (13) becomes
nrl
— ok 2
D, = coth 2B 22)
With the aid of the formula [15]
x  4x & 1
e e 2
tanh 5= 2 Gnsi)iia (23)
equation (16) is written as
mn mnB
¥ o ainh
b¥ 3 sinh 2
jrB [" h(x) . jmx . mnx
* 2 il sintS sin—— dx 24
b, coshL L g sinTpsiney dx (24)
mnB
= tanh ——.
rn = tanh —- )
In this case, solution (19) can be expressed by
ih nn(L—x)
) i (— 1y iz 10 2B nmy
wy) = A e COS ™
d)(t } n=123 nn . h nTCL 08 2B
P sinh g
+ Z ¢,, cosh EZJ sin m—zx (25)

m=1

where ¢,, can be determined from equation (17). When
h(x) is equal to a constant A, the integral cor-
responding to b%, in equation (24) satisfies the orthog-
onal condition, which can be expressed in terms of

0 if j#m
oY =1 nL mnB (26)
% cosh e if j=m.

Substituting equations (26) and (24) into equation
(18), with the aid of equation (17) c,, can be found at
once

mnB
~ 2 tanh I -
€ = inh mnB  h.L hnt' (
mr sin I + x cos 5L

Therefore, when A(x) is equal to a constant 4., the

following closed form solution is obtained :

S L—x '
, (=D "sinh "775(72757 ) cos ”372
e |
4 SO0 g
2 tanh mnB cosh " sin 7Y
+ Z L L L (28
gt inh mnB + h.L b mnB )
mm sinh —- . cosh —
Case 2
For 4, — 0, equation (11) can be simplified as
cos f#,,.L = 0. 29
The roots of the above transcendental equation are
2m—1)n
=" T for m=12... (30)
and equation (13) becomes
D, = tanh "% 31)
n = tanh o (

By use of equation (23), equation (16) is written as

Qm——])n .. 2m—-D=nB

bk = 1 sin 57
(2j—1)=B L h(x) . (2j~Dnx
* _— — — A,
bk, = cosh 2 Lk sin 7L
2m—1)mx
S
. (@m-D=uB 5
r, = tanh —— T (32)
Solution (19) can be expressed by
b nn(L—x)
L Y nmy
P(x.5) = Pt nm h nrl os 2B
g MY
2 2m—ry . (2m—Drx
+ Y o cosh( m2L my sin mZL Jx (33)

m =1

where ¢, can be found by equation (17). If A(x) is
equal to a constant k., b¥, in equation (32) can be
further reduced

0 it j#m
by, =< h.L 2m~1)nB . (34)
b cosh T i j=m
Similarly
Cpy =
Cm—=n
2 tanh TN
@@m—-Dn . @m—DaB kL 2m—nB’
3 sinh 5L + & cosh ERETARE
(35)
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In this case solution (33) has a closed form

. | (=17 Y2 cosh ﬂ%}—tﬁ S%X
dan= X M ooh L
4 % 7p
naB nmny . BAnx
2 tanh 5L cosh 57 Sin sy 6
an . nrB AL nnB

sinh — + osh

2 2L Tk ©

2L
As will be discussed later solution (36) does not

require the calculation of eigenvalues and eigen-
functions.

4. DISCUSSION AND A PRACTICAL EXAMPLE

Under the boundary condition of the previous sec-
tion {i.e. A, — o0 and &, — 0) and A(x) is equal to a
constant, A, the forms of solutions (28) and (36)
are different from the familiar expressions in most
references where the expressions are given in terms of
eigenvalues. For example, the solution in case 2 is
expressed by [1]

& 2H cosh f,(L—Xx) cos fi,y
O ) = L 1B+ HY) + H] cosh B,L cos B,B

J=1
37

where H is defined by A /k and B, are the roots of the
transcendental equation

B, tanﬁ’,-B:HEitf. (38)

k
Solution {37) is derived from the basic governing
differential equation (1) and the following boundary
conditions:

o

o= = <x<L; 41
3 y=0, 0<x (41)
o¢ ke

It is not difficult to show that solution {36) of this
paper also satisfies equation (1) and the above bound-
ary conditions. Based on the uniqueness principle of
this problem, the dimensionless temperature (36) is
identical with equation (37) even though they are
different in form. Since our solution (36) has been
written in a form that does not require eigenfunctions,
it is suitable for a calculator. It should be noted that
the series in equation (36) converges with order one,
which is slower than that in equation (37). Thus the
classical solution is still a better method for the cal-
culation of physical quantities near the boundaries of
the fin such as temperature, heat flow, etc.

1t has been shown that the proposed approach can
be used not only in the problems where A(x) is con-
tinuous in the x-direction but also in non-continuous
problems as long as #(x) satisfies the Dirichlet con-
ditions which mean that 4(x) is single valued, finite,
and sectionally continuous and cannot have an infinite
number of maxima and minima in the intervai (0, L).
As an exampie where A(x) is discontinuous, a square
spine [6] is considered as shown in Fig. 2. The fin
thermal conductivity k, is taken to be 100 W m™'
K~ '. The heat transfer coefficient 4(x) is assumed to
be 50 Wm~2 K™ ' along the first 0.01 m of its length,
and 100 W m~? K~ along the remaining 0.03 m.
This situation will produce a boundary layer along
the base surface inhibiting the heat transfer [6]. The
typical temperature curves (¢(x, 0) and ¢(x, B)) have
been plotted in Fig. 3. The thermal transmission ratio
u, which is the ratio of the rate of heat dissipated by
the fin to the temperature difference at the base {16},
is given by

¢ = x=0, 0<y<B; 39)
L
_ %‘é - —L 0<y<B, (40 p=P L h(x)$(x, B) dx 43)
X
y
S0W /m3K 100W /m3K
7
/: I 0.01m
; 1
¥ ]
t ]
X | .01m
B R T T 44---
o Adiabatic tip
7/ 4 x
001im ;
0.04m

F1G. 2. Fin with non-continuous heat transfer coefficients,
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FI1G. 3. Graph of dimensionless temperature.

where P is fin perimeter. Under the condition of an

adiabatic tip (case 2), with equation (33) the thermal

transmission ratio u is given in terms of a series
2m—1)nB

p=4W Y ¢, cosh 57

m=1

f)
© . (2m—Dnx
X J:) h(x) sin —5 ~dx  (44)
which, when evaluated numerically. leads to
u="01259WK~™" (45)

For comparison, u can be computed exactly by
regarding the spine as two fins in cascade and the one-
dimensional method [16]. The result is

w=0.1150WK"' (46)

an error of 8.7% on the above two-dimensional analy-
sis (45). Several works [3, 17] have shown that the
solution for two-dimensional heat flow in a fin with
a constant heat transfer coefficient is less than
that predicted by the one-dimensional approach.
However, it is interesting to note that our result is
greater than that from the one-dimensional method
since the heat transfer coefficient is not constant.
Recalling all the derivative processes, the result in this
investigation is based on an assumption that the base
temperature, 7. of the fin is constant. The effects of
a non-constant fin base temperature have received
some attention [10, 18]. However, it is not difficult to
expand the presented method into those cases pro-
vided the boundary condition expressed in equation
(1) is changed suitably so that the expression of «, is
different from that of equation (9).

As mentioned above, our solutions converge with
order one (equations (19), (25) and (33)). Further-

more it is seen that on the surface of a fin it takes
a longer time to solve the set of linear algebraic equa-
tions (17) due to slower convergence. This is a
common phenomenon for most finite two-dimen-
sional, steady heat conduction problems with no inter-
nal heat generation [17-19]. Although ref. [1] did man-
age to utilize the transcendental equation (38) for
solution (37) with convergence of order two, it is for
the case of constant heat transfer coefficient.

5. CONCLUSION

The technique of linearly combining functions to
form a general series is used to investigate a two-
dimensional rectangular fin for three boundary con-
ditions at the fin tip. The results of the temperature
distribution include the situation when a heat transfer
coefficient is constant. Based on the uniform dis-
tribution of temperature at the fin base, the difference
between prediction of one-dimensional computation
and that of two-dimensional analysis is about 8.7%.
However, it is not difficult to expand the presented
method into the cases of a non-constant fin base tem-
perature. It is noted that the method is applied to
arbitrary heat transfer coefficients even though they
are discontinuous.
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AILETTE RECTANGULAIRE BIDIMENSIONNELLE AVEC COEFFICIENT DE
TRANSFERT THERMIQUE VARIABLE

Résumé—On utilise une approche par série de Fourier pour étudier une ailette bidimensionnelle rectan-

gulaire avec coefficient de transfert thermique variable sur la surface. Les solutions pour la distribution de

température sont obtenues pour trois conditions aux limites différentes au sommet de l'ailette. A partir du

principe d'unicité des problémes pratiques, ces solutions conduisent a des expressions familiéres quand le
coefficient de transfert est constant bien qu’elles aient des formes différentes.

BETRACHTUNG EINER ZWEIDIMENSIONALEN RECHTECKRIPPE MIT VARIABLEN
WARMEUBERGANGSKOEFFIZIENTEN

Zusammenfassung—Mit Hilfe eines Fourier-Reihenansatzes wird eine zweidimensionale Rechteckrippe mit

beliebigen verdnderlichen Wirmeiibergangskoeffizienten an der Oberfliche untersucht. Fir drei unter-

schiedliche Randbedingungen an der Rippenspitze wird die Temperaturverteilung berechnet. Aufgrund

der Finzigartigkeit praktischer Probleme fithren diese Losungen zu dhnlichen Ausdriicken, sofern der
Wirmelibergangskoeffizient konstant ist.

JABYMEPHOE ITPAMOYTOJBHOE PEBPO C MEPEMEHHLIM KO2®PULIMEHTOM
TEIMMJIOOTIAYHN

Assoramms—C nomoumpio pagoB Oyphe HeeneayeTcs TEMIOOOMEH IByMEPHOTO MPAMOYTOJIBHOTO pebpa
C [POHM3BOJNILHBIM HEPEMEHHBIM KO3PPHLUHMECHTOM TEIIOOTAAYM HA NoBepXHocTH. [ToaydeHnl peiueHus
QA pacnpeleNieHHs TEMNEPATYD NPH TpeX Pa3IHYHbIX IPAaHHYHBIX YCIOBHAX Ha BepluMHe pebpa. B cuny
NPHHUHIMAJILHON OOIHOCTH NPaKTHYECKHX 3aja4 3TH PELICHHS NPHBOIAT K H3BECTHBIM, XOTA M pa3-
JIMYHBIM 110 opMe, BBIpaKEeHHSM, NOJTy4YEHHBIM NPH OCTOAHHOM KOXpPUIMEHTE TEIOOTAAYH.



