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Abstract-A Fourier series approach is used to investigate a two-dimensional rectangular fin with arbitrary 
variable heat transfer coefficient on the fin surface. The solutions for temperature distribution with three 
different boundary conditions at the fin tip have been obtained. Based on the uniqueness principle of 
practical problems, these solutions will lead to the familiar expressions when the heat transfer coefficient 

is constant although they are different in form. 

1. INTRODUCTION 

MANY FIN problems have been solved under the 
assumption of constant heat transfer coefficient along 
the entire length of the fin. A variety of results can be 
found in ref. [ 11. Unfortunately, in the design process 
of the fin this assumption is not quite valid [2]. For 
example, with regard to the effect of variability of heat 
transfer coefficient on the single material fin, finite 
difference calculations with a linearly increasing value 
of the coefficient showed a 39% reduction of heat 
transfer in some cases [3]. Theoretically, it is shown 
that for a flat fin the effects of the leading edge, the 
boundary layer, and turbulence can lead to marked 
variations in the heat transfer coefficient. Obviously, 
an analysis of the combined conduction~onvection 
system with a variable heat transfer coefficient is 
important from a practical viewpoint. 

Historically, Han and Lefkowitz [4] studied a one- 
dimensional longitudinal fin of rectangular profile 
with arbitrary heat transfer coefficient, h(v), taken as 
a power series of the distance .‘c from the fin base. 
Chen and Zyskowski [5] took the same problem with 
an exponential variation of the heat transfer 
coefIicient, while Heggs at al. [6] considered the tem- 
perature distribution within an annular triangular fin 
with heat transfer c~~~ients increased linearly from 
the tin base to the fin tip. These investigations showed 
that. in some cases, the assumed variations can give 
results which are in excellent agreement with those 
obtained experimentally. However, for any given 
problem the appropriate variation cannot be pre- 
scribed by these simple functions and consequently 
uniform heat transfer coefficients are still used. More 
recently, Snider and Kraus [7] developed an 
expression for the average heat transfer coefficient 
which can be determined by use of a lengthwise 
weighting function IV(X). Unat 18, 91 studied a one- 
dimensional fin with heat generation and non-uniform 
heat transfer coefficient which is a function of tem- 
perature. Barrow [IO] presented a series solution for 

the one-dimensional temperature distribution along 
a rectangular fin with variable surface heat transfer 
coefficient. 

All of the previous studies are based on the one- 
dimensional fin. Some researchers [ 1 I-131 reported 
that the one-dimensional analysis can be used instead 
of two-dimensional analysis only if the transverse Biot 
number, Bi, is much less than unity. Suryanarayana 
[12] has revealed that the fin heat fluxes can be lower 
by 80% than those predicted by the one-dimensional 
approach in some cases. Thus, the analysis for the 
two-dimensional fin with variable heat transfer coeffi- 
cients is important in theory and practice. Barrow 
er al. [3] predicted the tem~rature and heat flow 
in rectangular composite fins with a linearly increasing 
distribution of heat transfer coefficients by finite 
element and finite difference methods. However, the 
analytical solution of this problem has not been 
obtained because the boundary conditions become 
complicated. Mathematically, difficulty arises for the 
Sturm-Liouville problem with non-constant heat 
transfer coefficient boundary condition according to 
the traditional approach (separation of variables). 
This paper develops a Fourier series approach to solve 
the two-dimensional rectangular fin. The temperature 
distribution in the rectangular fin with arbitrary vari- 
able heat transfer coefhcient has been written in terms 
of a summation of series. The analytical solution has 
been described for the basic governing equation with 
heat dissipation by convection from the tip of the fin 
to the surroundings at r,. In Section 3, solutions for 
two other boundaries of the tip of a fin in which the 
tip temperature is equal to that of the surroundings 
and the tip is insulated are derived. 

2. SOLUTION UNDER CONSTANT TIP 
SURFACE CONVECTION COEFFICIENT 

Consider a rectangular fin (2B x L) where both the 
upper and the lower surfaces dissipate heat by con- 
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NOMENCLATURE 

[I,~, b,, dimensionless unknown constants T temperature [K] 

h,,,,, hzi dimensionIess elements in matrix T, tem~erat~lre of surroundings [K] 
B half thickness of fin [m] .r. ) Cartesian coordinates [m] 
Bi transverse Biot number, i~B/k I7 width of fin [ml. 

(‘nr dimensionless unknown constants 
D dimensionless constant Greek symbols 
it, h(x) heat transfer coefficient P roots of transcendental equations [mm ‘1 

[W rn--‘K-‘] P thermal transmission ratio [W Km ‘1 
H ratio of heat transfer coefficient and 4, @ dimensionless tem~rature. 

thermal conductivity [rn-. ‘1 
k thermal conductivity of fin material Subscripts 

[W m-’ K-‘1 b base of fin 
L fin length [m] C constant 

P fin perimeter [m] j. nr, fz indexes 

t;, din~ensionless elements in column matrix L tip of fin. 

vection to a surrounding at temperature, T,, with 
variable heat transfer coefficient h(.u) (Fig. 1). Fur- 

9 = 0 
& 

?’ = 0. O<.y,<L; (5) 

thermore, the tip of the fin has a constant heat transfer 
coefficient h,_ and the temperature of the fin base is ad, h(x) 

7’,. Under steady state condition and no heat gener- 
- ~~~ = -ii-d 

2) 
.V = B, 0 < .Y < f.; (6) 

ation, the governing equation for the two-dimensional 
fin of the homogeneous material is 

where /i is the conductivity of the fin material. By use 
of linear combination of the Fourier cosine series 

iC#(x,J9 + <2$(x._V) o about ?: and the sine series about s [14], the solution 

a.2 cy- (1) which satisfies the governing equation (1) can be 
assumed as 

where 4(.x, JJ) is a dimensionless temperature - 

T- T, 
qqr,y) = ~ 

Tt$-T, 
a, cash !‘?l-y + b,, sinh !yG 

2B 
cos g 

with the following boundary conditions : + 1 c,,, cash /$,J sin flm.x (7) 
,n= I 

+=I x=0. O<y<B; (3) 
where the four undetermined constants a,,. b,,, cm and 

84 /1,. __=.. (b .u=L, OGyYB; (4) 
/3, are not independent. Their relations can be found 

F.Y k through the boundary conditions. However, the 

Y 

_ 
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/ 
/ 
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h(x) 
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Frc;. I. Geometry of a two-dimensional fin 
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above solution satisfies boundary (5) automatically. 
It is obvious that boundary condition (4) must be split 

into two parts so that two sets of constants can be 
determined. The other boundary conditions (3) and 

(6) can be used to determine the remainder of the 
constants. First, introducing solution (7) into bound- 
ary condition (3) the following expression is obtained : 

1c 

c a,cos~~= 1. 
,1= l.3 2B 

(8) 

By the inversion of the Fourier transform, the con- 
stant a, can be found in terms of 

a,, = 4(-l)“‘_ “,2 

nn (9) 

After substituting equation (7) into boundary con- 
dition (4) we have 

- ~~,,~[~.sinh~+b,,cosh$]cos$ 

- i c,J, cash fi,,,y cos b,,,L 
m= I 

n7CL n7CL 
a, cash-- +b, sinh-- 

2B 1 COST 
2B 2B 

+ i c, coshB,ysinj,L 
1 m= I 

(10) 

As mentioned above, expression (10) has to be divided 
into two parts; i.e. from the second terms on both 
sides, the eigenvalues p,,, can be written as 

h,L 
B,Lcotfl,L= --, 

k 
(11) 

From the first terms on both sides of expression (10) 
b, can be expressed in terms of a, 

b, = -anDo (12) 

where D, stands for 

n7CL 

D, = 

2B tanh z + y 

g + !!!$ tanh s 
(13) 

Finally, c, can be found by considering boundary 
condition (6). Introducing solution (7) into boundary 

condition (6), we have 
I 
1 c,,& sinh ,$,B sin &X 

+ y 2 c, cash &B sin &,x 
m- I 

a, cash 5 +b, sinh s 1 . 
(14) 

Utilizing the inversion formula of the Fourier trans- 
form over the region (0, L), noting expressions (9) and 

(12) and making suitable changes for some subscripts, 
we find 

c,bz+ f c,bz, = r, (m= 1.2....) (15) 
,= I 

where 

bz = 0.5 sinh fimB(fimL-sin jmL cos p,,,L)] 

bzi = cash /l,B o k sm b,x sin fims d.y 
s 

L h(x) 

x2L 
r,, = 

= -SC 

(16) 

“= 1.3 Bo 
cash g 

- D, sinh g 1 sin /?,x dr 

where D, is expressed by equation (14). c, in equation 
(15) can be found by 

-b I I b,z . b,, .- 

b 21 b,, bz, . 
. . . 

b ml bm2 . b,, 

. . . 

where 

c ri 
c, r2 

= (17) 

C,?i r,, 

b,, = 
Xi, if j#m 

b; + b:, if j= m. (18) 

Therefore, solution (7) can be expressed by 

$@$) = f (-l;;m”!J 
“= 1.3 

4 

?lnL nn(L-x) h, L 
_ cash ~ 

nn(L-x) 

2B 2B 
+ &sinh 2B 

X 
Wt)? 

nnL nnL h,L nnL 
pcosh2B+2Bsmh7B 

cos 2B 

2B 

+ i c, cash bmy sin &s (19) 
m= I 

where p,,, and c, are determined by equations (11) 
and (17), respectively. 

3. SOLUTIONS FOR THE TIP BOUNDARY 
CONDITIONS OF THE FIRST AND SECOND 

KINDS 

The solutions in the two cases can be obtained 
directly from that of Section 2 by approximation [ 11. 
In the first case h, + co, the temperature of the fin tip 
is that of the surroundings, T,, , hence $(L, y) is 
equal to zero. In the second case h, + 0, the fin tip is 
insulated. The analytical process can be, respectively, 
shown as follows. 
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c-use I 
For /I, -+ x, equation (I 1) can be simplified as 

sin /I,,L = 0. (20) 

Thus the roots of the transcendental equation are 

IL, = n; (,n= 1.2....) 

and equation ( 13) becomes 

D,, = cothy;. (22) 

With the aid of the formula [15] 

tanh y = ?! i ~~_ 1 

x ,,= , (2n- l)j?_.? 

equation (16) is written as 

b* = cosh’~j- ‘, h(x) j71x m7cx 
m, L o k 

sm - sm ~ dr 
L L 

i 

rw1 = tanh TB. 
J 

In this case, solution (19) can be expressed by 

(2’) 

(23) 

(24) 

flZJ 

a-._ ---~ cos .- 
2B 

4 
sinh -~ 

2B 

where c, can be determined from equation (I 7). When 
II(X) is equal to a constant h,, the integral cor- 
responding to bz, in equation (24) satisfies the orthog- 
onal condition, which can be expressed in terms of 

0 

i- 

if j#m 

@I, = h,L mxB 

2k 
cosh_L- if 

(26) 
j = m. 

Substituting equations (26) and (24) into equation 
(18), with the aid of equation (17) c, can be found at 
once 

2 tan’, “‘B 
L 

cm = 
mnB h,L mnB 

(27) 

mx sinh L + -cash ~ 
k 2L 

following closed form solution is obtained : 

, 2 tanh 
mxB m7l?’ IrlTcS 

cash 

lrr = ’ tm sinh mL + b cash L-~ 

Case 2 

For 11,. ---) 0, equation (I 1) can be simplified as 

cos [jmL = 0. (29) 

The roots of the above transcendental equation are 

pn, = !2;I!!)n for m = I 3 , -. . (30) 

and equation (13) becomes 

D,, = tanh ‘;“B” (31) 

By use of equation (23), equation (16) is written as 

,. 
m 

= tan’., (2”- ‘jnB 
2L 

Solution ( 19) can be expressed by 

(32) 

mc(L-.x) 
, cash 2z.-.-.m 

&x 1’) = i (r’,“‘-‘i -. tl7r.V 
,d 

II 1.3 nil tZ7LL cos TB 

4 
cash B 

+ i c, cash -pz-- 
(2m- 1)nv (3m - 1 )ns 

2L 
s,n ‘L. .._ (33) 

,,I _ I 

where c,, can be found by equation (I 7). If h(.v) is 
equal to a constant h,. b,*,, in equation (32) can be 
further reduced 

if j # m 

(34) 

Similarly 

c,,, = 

(2m- 1)~ sinh (2&- 1)zB + h& ,,,~<z”-“““’ 
_____ 

2 2L k 2L 

(35) Therefore. when h(x) is equal to a constant h,. the 
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In this case solution (33) has a closed form 

(_l)‘“~“/2cosh-~_cos~ nn(L--x) 
,G 

N&Y) = c 
28 28 ___-..... ____ 

nn n7cL 
- cash 2B 
4 

+ (36) 

As will be discussed later solution (36) does not 
require the calculation of eigenvalues and eigen- 
functions. 

4. DISCUSSION AND A PRACTICAL EXAMPLE 

Under the boundary condition of the previous sec- 

tion (i.e. h,_ -+ m and h, -+ 0) and h(x) is equal to a 
constant, h,, the forms of solutions (28) and (36) 
are different from the familiar expressions in most 
references where the expressions are given in terms of 
eigenvalues. For example, the solution in case 2 is 
expressed by [I] 

,n 

4(KY) = c 2H cash jl,(L-x) cos /3,y 

, = 1 [B(Bf + H ‘) + H] Gosh PjL COS b/B 

(37) 

where H is defined by h,/k and pi are the roots of the 
transcendental equation 

h, 
p,tanfl;B= H=-. 

k (38) 

Solution (37) is derived from the basic governing 
differential equation (1) and the following boundary 
conditions : 

4=1 x = 0, OCyCB; (39) 

a#J _ .-.- = 0 
ax 

x=L, O,<yGB; (40) 

a4 0 
q= 

y=o, O<x<L; (41) 

a+ h, --_= 
ay 

k4 y=B, O<x<L. (42) 

It is not difficult to show that solution (36) of this 
paper also satisfies equation (1) and the above bound- 
ary conditions. Based on the uniqueness principle of 
this probIem, the dimensionless temperature (36) is 
identical with equation (37) even though they are 
different in form. Since our solution (36) has been 
written in a form that does not require eigenfunctions, 
it is suitable for a calculator. It should be noted that 
the series in equation (36) converges with order one, 
which is slower than that in equation (37). Thus the 
classical solution is still a better method for the cal- 
culation of physical quantities near the boundaries of 
the fin such as temperature, heat flow, etc. 

It has been shown that the proposed approach can 
be used not only in the problems where h(x) is con- 
tinuous in the x-direction but also in noncontinuous 
problems as long as h(x) satisfies the Dirichlet con- 
ditions which mean that h(u) is single valued, finite, 
and sectionally continuous and cannot have an infinite 
number of maxima and minima in the interval (0, L). 
As an exampfe where h(x) is discontinuous, a square 
spine [6] is considered as shown in Fig. 2. The fin 
thermal conductivity k, is taken to be 100 W m-’ 
Km ’ . The heat transfer coefficient h(x) is assumed to 
be 50 W me2 K- ’ along the first 0.01 m of its length, 
and 100 W m- 2 KM- ’ along the remaining 0.03 m. 
This situation will produce a boundary layer along 
the base surface inhibiting the heat transfer 161. The 
typical temperature curves (#(x, 0) and &x, B)) have 
been plotted in Fig. 3. The thermal transmission katio 
p, which is the ratio of the rate of heat dissipated by 
the fin to the temperature difference at the base [16], 
is given by 

WMx, B) dx (43) 

O.Olm 
.c 

0.04ftl 
< > 

Fw. 2. Fin with non~ntinu~~ heat transfer coefficients. 
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FIG. 3. Graph of dimensionless temperature. 

where P is fin perimeter. Under the condition of an 
adiabatic tip (case 2), with equation (33) the thermal 
transmission ratio p is given in terms of a series 

I 

p = 4 W c 
(2m - 1)xB 

c,,, cash ~-~~- - --- 
111 _ I 2L 

s /. (2nr - 1 j7c.Y 
X h(s) sin ~ P2L d.u (44) 

0 

which, when evaluated numerically. leads to 

p = 0.1259 W Km ‘. (45) 

For comparison, p can be computed exactly by 

regarding the spine as two fins in cascade and the one- 
dimensional method [ 161. The result is 

/‘= 0.1150 W K ’ (46) 

an error of 8.7% on the above two-dimensional analy- 
sis (45). Several works [3, 171 have shown that the 
solution for two-dimensional heat flow in a fin with 
a constant heat transfer coefficient is less than 
that predicted by the one-dimensional approach. 
However, it is interesting to note that our result is 
greater than that from the one-dimensional method 

since the heat transfer coefficient is not constant. 
Recalling all the derivative processes, the result in this 
investigation is based on an assumption that the base 
temperature, T,,. of the tin is constant. The effects of 
a non-constant fin base temperature have received 
some attention [lo, 181. However, it is not difficult to 
expand the presented method into those cases pro- 
vided the boundary condition expressed in equation 
(1) is changed suitably so that the expression of u,! is 
different from that of equation (9). 

As mentioned above, our solutions converge with 
order one (equations (19). (25) and (33)). Further- 

more it is seen that on the surface of a fin it takes 
a longer time to solve the set of linear algebraic equa- 
tions (17) due to slower convergence. This is a 
common phenomenon for most finite two-dimen- 
sional, steady heat conduction problems with no inter- 
nal heat generation [ 177191. Although ref. [I] did man- 
age to utilize the transcendental equation (38) for 
solution (37) with convergence of order two, it is for 
the case of constant heat transfer coefficient. 

5. CONCLUSION 

The technique of linearly combining functions to 

form a general series is used to investigate a two- 
dimensional rectangular fin for three boundary con- 
ditions at the fin tip. The results of the temperature 
distribution include the situation when a heat transfer 
coefficient is constant. Based on the uniform dis- 
tribution of temperature at the fin base, the difference 
between prediction of one-dimensional computation 
and that of two-dimensional analysis is about 8.7%. 
However, it is not difficult to expand the presented 
method into the cases of a non-constant fin base tem- 

perature. It is noted that the method is applied to 
arbitrary heat transfer coefficients even though they 
are discontinuous. 
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AILETTE RECTANGULAIRE BIDIMENSIONNELLE AVEC COEFFICIENT DE 
TRANSFERT THERMIQUE VARIABLE 

R&sum&On utilise une approche par serie de Fourier pour Ctudier une ailette bidimensionnelle rectan- 
gulaire avec coefficient de transfert thermique variable sur la surface. Les solutions pour la distribution de 
temperature sont obtenues pour trois conditions aux limites differentes au sommet de l’ailette. A partir du 
principe d’unicite des probltmes pratiques, ces solutions conduisent a des expressions familieres quand le 

coefficient de transfert est constant bien qu’elles aient des formes differentes. 

BETRACHTUNG EINER ZWEIDIMENSIONALEN RECHTECKRIPPE MIT VARIABLEN 
WARMEUBERGANGSKOEFFIZIENTEN 

Zusammenfassung-Mit Hilfe eines Fourier-Reihenansatzes wird eine zweidimensionale Rechteckrippe mit 
beliebigen veranderlichen WIrmeiibergangskoeffizienten an der Oberflache untersucht. Fur drei unter- 
schiedliche Randbedingungen an der Rippenspitze wird die Temperaturverteilung berechnet. Aufgrund 
der Einzigartigkeit praktischer Probleme fiihren diese Ldsungen zu ahnlichen Ausdriicken, sofern der 

Warmeiibergangskoeffizient konstant ist. 

ABYMEPHOE I-IPRMOYFOJIbHOE PE6PO C I-IEPEMEHHbIM K03@@MHHEHTOM 
TEI-IJIOOT&A~M 

AmIOTaLm5i-C nOMOI.IJbIo pnnon @ypbe HCCJIenyeTCl Tennoo6MeH nByMepHor0 npnMoyronbHoro pe6pa 
c npon3nonbnbtM nepeMerinbrh+ K03i$+iuuetrroM TennooTnaw Ha noeepxaccrs. Ilony=tem pelueHm 

.mn pacnpenenemn TeMnepaTyp npH apex pa3nHrHbIx rpaHmrHhIx ycnoetinx Ha BepmHHe pe6pa.B cwny 
npHHtUinMaJIbHOti 06mHIXTn npaKTHWCKHX 3aLlWl 3TH pfXlleHH~ npHBOL0lT K H3BWTHbtM, XOTR A pa3- 

nmHblMnotpophte,n~panceiimzht,nony~eHnbrh4 npe nocronHHoh4 Ko3+~uuneHTeTennooTnara. 


